$0.045 \AA$ longer as a consequence of the rehybridization. These comparisons show that because of the electronic delocalization the $\mathrm{N}-\mathrm{O}$ bond is short in the molecule discussed here. In fact, it is the shortest ever reported for 1,2-oxazines (Allen et al., 1979) (Cambridge Structural Database, version 3.40).

Because of the 4,5 double bond, the six-membered heterocycle adopts a half-chair conformation. The endocyclic torsion angles $-70 \cdot 9(8), 49 \cdot 0(8)$, $-11 \cdot 1(8),-4 \cdot 8(8),-14 \cdot 6(8)$ and $50 \cdot 1(8)^{\circ}$ indicate a large puckering $\left[70.9(8)^{\prime}\right]$ at the $\mathrm{N}-\mathrm{O}$ bond. The O atom is displaced by 0.64 (1) \AA from the mean plane through the five other atoms. Large puckering has already been reported in chair conformations of perhydro-1,2-oxazines where the torsions around $\mathrm{N}-\mathrm{O}$ are in the range 65-75" (Holzapfel, Kruger \& Van Dijk, 1987).

The authors thank Dr J. L. Vaerman from the Laboratory of Organic Chemistry of this University (Professor H. G. Viehe) for providing the crystals and interesting discussions and the FNRS Belgium for financial support.

References

Allen, F. H., Bellard, S., Brice, M. D., Cartwright, B. A., Doubleday, A., Higgs, H., Hummelink, T., HummelinkPeters, B. G., Kennard, O., Motherwell, W. D. S., Rodgers, J. R. \& Watson, D. G. (1979). Acta Cryst. B35, 2331-2339.
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. Sl-S19.
Bodger, L. \& Patel, M. (1984). J. Org. Chem. 49, 4098-4099.
Holzapfel, C. W., Kruger, G. J. \& Van Dijk, M. S. (1987). Acta Cryst. C43, 598 -601.
Johnson, J. E., Hodzi, R., Todd, S. L., de Meester, P. \& Chu, S. S. (1986). J. Heterocycl. Chem. 23, 1423-1426.

Motherwell, S. \& Clegg, W. (1978). PlutO. A program for plotting crystal and molecular structures. Univ. of Cambridge, England.
Nelsen, S. F., Thompson-Colon, J. A., Kirste, B., Rosenhouse, A. \& Kaftory, M. (1987). J. Am. Chem. Soc. 109, 71287136.

Pauling, L. (1960). The Nature of the Chemical Bond, 2nd ed., p. 189. Ithaca: Cornell Univ. Press.

Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Sheldrick, G. M. (1985). In Crystallographic Computing 3, edited by G. M. Sheldrick, C. Krüger \& R. Goddari), pp. 175-189. Oxford Univ. Press.
Vaerman, J. C. (1989). PhD thesis, Catholic Univ. of Louvain, Belgium.

Acta Cryst. (1991). C47, 829-832

Structure of (\pm)-Aminoglutethimide

By Patrick Van Roey,* Keith A. Bullion and Yoshio Osawa
Medical Foundation of Buffalo Inc., 73 High Street, Buffalo, NY 14203, USA
and Dietmar G. Braun
Ciba Geigy Limited, CH-4002 Basel, Switzerland

(Received 10 April 1990; accepted 7 August 1990)

Abstract

Aminophenyl)-3-ethyl-2,6-piperidinedione, $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}, \quad M_{r}=232 \cdot 3$, monoclinic, $P 2_{1} / n, a=16.895(2), b=8.519$ (1),$c=8.762$ (1) \AA, $\beta=95.71(1), \quad V=1254 \cdot 9(2) \AA^{3}, \quad Z=4, \quad D_{x}=$ $1.23 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda($ Mo $K \alpha)=0.71069 \AA, \quad \mu=$ $0.785 \mathrm{~cm}^{-1}, F(000)=496, T=294 \mathrm{~K}, R=0.064$ for all 3676 reflections. The molecule is L shaped with the p-aminophenyl and the piperidinedione groups forming the vertical arm and the base, respectively. The polar imide half of the piperidinedione group is in front of the L for the active + enantiomer and at the back for the less-active - enantiomer. The structure is very similar to that of phenobarbital. Intermolecular interactions include one strong and one

[^0]0108-2701/91/040829-04\$03.00
weak hydrogen bond and an apparent interaction between one of the amino H atoms with the π cloud of the phenyl ring.

Introduction. Aminoglutethimide (AG) is a nonsteroidal aromatase inhibitor that has been used clinically for the treatment of breast cancer in postmenopausal women (Santen, Worgul, Samojlik, Boucher, Lipton \& Harvey, 1982; Shaw, Nicholls \& Smith, 1988). Structure-activity studies of AG and other non-steroidal aromatase inhibitors are complicated by the large variation in the structures of active compounds (Banting et al., 1988). AG (Elipten CIBA) was initially introduced as an anticonvulsant but later withdrawn because of adrenal toxicity (Camacho, Brough, Cash \& Wilroy, 1966). It is © 1991 International Union of Crystallography
structurally more related to other anticonvulsants, such as phenobarbital, than to other aromatase inhibitors. The + enantiomer of AG has been shown to be more active than the - enantiomer (Finch, Dziemian, Cohen \& Steinetz, 1975), suggesting that the relative distances and orientations of the functional groups in the + enantiomer correspond to the required arrangement for binding to the active site of the enzyme.

Experimental. The sample was provided by Ciba Geigy Corporation. Large rod-shaped crystals were obtained by slow evaporation of an aqueous methanol solution at 310 K . The crystal used for data collection was cleaved from a larger one and had approximate dimensions of $0.60 \times 0.62 \times 0.65 \mathrm{~mm}$. Systematic absences ($h 0 l, h+l=2 n ; 0 k 0, k=2 n$) are consistent with space group $P 2_{1} / n$. Nicolet $P 3$ diffractometer, Mo $K \alpha$ radiation, Nb filter, $\theta / 2 \theta$ scan method. Unit-cell dimensions and orientation matrix were determined from 49 reflections with $22.5<2 \theta$ $<29.9^{\circ}$. There were 5250 reflections measured with 4 $<2 \theta<60^{\circ},-24<h<24,0<k<12,-1<l<13$. Intensities of six standard reflections ($\overline{1} 5 \overline{1}, \overline{1} \overline{1}, 1,1$, $10,1,3,216,534,834)$ were monitored after every 60 th measurement but did not decline significantly. Orientation checks were not used. Lorentz and polarization corrections were applied but absorption correction was not considered necessary. Of the 3676 independent reflections ($R_{\text {int }}=0.018$), 3013 had $F>$ $3 \sigma(F)$ and were used in the refinement. $\sigma(F)$ was calculated according to Stout \& Jensen (1968): $\sigma^{2}(F)$ $=(k / 4 \mathrm{Lp} I)\left[\sigma^{2}(I)+(0.007 I)^{2}\right]$. The structure was determined by direct methods using MULTAN (Germain, Main \& Woolfson, 1971) and refined by full-matrix least squares, minimizing $\sum w\left(F_{o}-F_{c}\right)^{2}$, where $w=1 / \sigma^{2}(F)$. Coordinates for all H atoms were determined from difference maps and refined with the non-H atoms after the anisotropic refinement had converged. The maximum value of the shift/ e.s.d. during the last cycle of refinement was $0 \cdot 10$. Final R values are $R=0.053$, $w R=0.052$ for the data used in the refinement and $R_{\text {all }}=0.064$ for all 3676 data; $S=3.977$ with refinement of all 218 parameters. The final difference map had maximum and minimum densities of 0.28 and $-0.25 \mathrm{e}^{-3}$. Atomic scattering factors and dispersion corrections were taken from International Tables for X-ray Crystallography (1974, Vol. IV, pp. 71-147). Other programs used include Blessing's (1987) data reduction package, locally modified refinement and structure analysis programs based on programs in the EnrafNonius SDP package (Enraf-Nonius, 1979) and the plotting program ORTEPII (Johnson, 1976).

Discussion. Atomic coordinates for the D enantiomer and equivalent isotropic thermal parameters are

Table 1. Fractional atomic coordinates $\left(\times 10^{5}\right.$ for non -H atoms, $\times 10^{4}$ for H atoms) and isotropic thermal parameters $\left(\times 10^{2}\right.$ for non -H atoms, $\times 10$ for H atoms) for (\pm)-aminoglutethimide

The equivalent isotropic thermal parameter for the non-H atoms is calculated as $B_{\text {eq }}=\left(8 \pi^{2} / 3\right) \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i i} \cdot \mathbf{a}_{j}$.

	\boldsymbol{x}	y	z	$B_{\text {cq }} / B_{\text {iso }}\left(\AA^{2}\right)$
$\mathrm{C}(1)$	$15892(7)$	$28318(14)$	$40088(14)$	$342(3)$
$\mathrm{C}(2)$	$12881(8)$	$16178(19)$	$48384(17)$	$474(4)$
$\mathrm{C}(3)$	$17489(9)$	$8122(20)$	$59745(17)$	$509(4)$
$\mathrm{C}(4)$	$25422(7)$	$12007(16)$	$63418(15)$	$408(3)$
$\mathrm{N}(4)$	$30188(10)$	$3930(20)$	$74483(18)$	$626(5)$
$\mathrm{C}(5)$	$28508(7)$	$24057(15)$	$55247(16)$	$384(3)$
$\mathrm{C}(6)$	$23904(7)$	$31867(15)$	$43812(16)$	$373(3)$
$\mathrm{C}(7)$	$10824(7)$	$38143(15)$	$28156(14)$	$365(3)$
$\mathrm{C}(8)$	$15036(9)$	$40746(16)$	$13586(16)$	$410(3)$
$\mathrm{C}(9)$	$16885(8)$	$25377(17)$	$6057(18)$	$429(4)$
$\mathrm{C}(10)$	$9855(7)$	$14724(15)$	$3760(15)$	$392(3)$
$\mathrm{O}(10)$	$9494(6)$	$3712(12)$	$-5131(13)$	$524(3)$
$\mathrm{N}(11)$	$3593(6)$	$17863(14)$	$12120(13)$	$411(3)$
$\mathrm{C}(12)$	$3221(7)$	$29055(16)$	$23480(15)$	$395(3)$
$\mathrm{O}(12)$	$-2926(5)$	$30664(13)$	$29328(12)$	$549(3)$
$\mathrm{C}(13)$	$8869(9)$	$53947(17)$	$35645(18)$	$465(4)$
$\mathrm{C}(14)$	$3947(15)$	$65467(26)$	$25456(30)$	$700(6)$
$\mathrm{H}(\mathrm{N} 11)$	$-88(10)$	$1125(18)$	$1018(18)$	$55(3)$
$\mathrm{H}(\mathrm{N} 4 A)$	$2750(10)$	$-208(23)$	$8014(24)$	$68(5)$
$\mathrm{H}(\mathrm{N} 4 B)$	$3478(11)$	$759(22)$	$7754(24)$	$75(5)$
$\mathrm{H}(2)$	$737(9)$	$1334(17)$	$4642(17)$	$52(3)$
$\mathrm{H}(3)$	$1513(9)$	$-6(20)$	$6484(21)$	$63(4)$
$\mathrm{H}(5)$	$3416(8)$	$2697(15)$	$5706(17)$	$48(3)$
$\mathrm{H}(6)$	$2631(8)$	$3998(16)$	$3819(16)$	$45(3)$
$\mathrm{H}(8 A)$	$1985(8)$	$4736(16)$	$1613(16)$	$47(3)$
$\mathrm{H}(8 B)$	$1145(8)$	$4655(15)$	$641(16)$	$42(3)$
$\mathrm{H}(9 A)$	$1866(10)$	$2719(18)$	$-342(23)$	$62(4)$
$\mathrm{H}(9 B)$	$2105(8)$	$1944(16)$	$1270(17)$	$48(3)$
$\mathrm{H}(13 A)$	$1409(9)$	$5971(17)$	$3917(18)$	$55(3)$
$\mathrm{H}(13 B)$	$606(8)$	$5163(17)$	$4496(19)$	$50(3)$
$\mathrm{H}(14 A)$	$296(13)$	$7422(28)$	$3084(30)$	$97(6)$
$\mathrm{H}(14 B)$	$731(14)$	$7016(27)$	$1632(32)$	$109(7)$
$\mathrm{H}(14 C)$	$-128(14)$	$6004(25)$	$2087(28)$	$97(6)$

listed in Table 1.* Fig. 1 shows the molecular conformation and the numbering scheme used. Selected bond lengths, bond angles and torsion angles are listed in Table 2.
The ring containing the imide group is a nearly perfect half chair with $C(7)$ and $C(9)$ equally displaced (-0.129 and $0.127 \AA$, respectively) from the least-squares plane of the atoms $\mathrm{C}(7), \mathrm{C}(9), \mathrm{C}(10)$, $\mathrm{C}(12), \mathrm{N}(11), \mathrm{O}(10)$ and $\mathrm{O}(12)$ (r.m.s. deviation $0.079 \AA$) but much less than $\mathrm{C}(8)$, which is $0.650 \AA$ below this plane. The imide group $\mathrm{O}(10)-\mathrm{C}(10)-$ $\mathrm{N}(1.1)-\mathrm{C}(12)-\mathrm{O}(12)$ is somewhat asymmetric. Bond lengths and angles indicate a slightly greater contribution of the $\mathrm{O}^{-}-\mathrm{C}=\mathrm{N}^{+}$resonance form at $C(10)$ than at $C(12)$, but the whole group is nearly coplanar (r.m.s. deviation $0.024 \AA$). This ring geometry makes the exocyclic atom $\mathrm{C}(13)$ coplanar with $C(7), C(8)$ and $C(9)$. The phenyl ring is nearly eclipsed with the $\mathrm{C}(7)-\mathrm{C}(12)$ bond. This orientation is most probably caused by the location of $\mathrm{C}(9)$ above the plane of the imide and the only potentially

[^1]Table 2. Bond lengths (\AA), selected bond angles $\left({ }^{\circ}\right)$ and torsion angles $\left({ }^{\circ}\right)$ for (\pm)-aminoglutethimide

$\mathrm{C} 1-\mathrm{C} 2 \quad 1.3$	1.389 (2)	C8-C9 1.5	1.513 (2)
$\mathrm{C} 1-\mathrm{C} 6 \quad 1$.	1.394 (2)	$\mathrm{Cl}-\mathrm{C} 7 \quad 1.53$	1.533 (2)
$\mathrm{C} 2-\mathrm{C} 31$.	$1 \cdot 383$ (2)	C9-C10 1.492	1.492 (2)
$\mathrm{C} 3-\mathrm{C} 4 \quad \mathrm{I}$	1.387 (2)	$\mathrm{Cl0}-\mathrm{Ol0} \quad 1.217$	1.217 (2)
$\mathrm{C} 4-\mathrm{N} 4 \quad \mathrm{l}$ -	1.381 (2)	$\mathrm{ClO}-\mathrm{Nil} \quad 1.372$	1.372 (2)
$\mathrm{C4}-\mathrm{C} 5 \quad 1$.	1.383 (2)	$\mathrm{N} 11-\mathrm{C} 12 \quad 1.384$	1.384 (2)
C5-C6 1.37	1.377 (2)	$\mathrm{Cl}-\mathrm{Ol2} 1.2$	1.211 (2)
C7-C8 1.	1.538 (2)	$\mathrm{Cl3}-\mathrm{Cl4}$ 1.5	1.518 (3)
C7-C12 1.	1.521 (2)	$\mathrm{C} 7-\mathrm{Cl3} 1.5$	1.548 (2)
C8-C7-C. 12	107.3 (1)	$\mathrm{C} 2-\mathrm{Cl}-\mathrm{C} 7$	123.7 (1)
C8-C7-C13	111.2 (1)	$\mathrm{C} 6-\mathrm{Cl}-\mathrm{C} 7$	120.3 (1)
$\mathrm{Cl} 2-\mathrm{C} 7-\mathrm{Cl} 3$	$110 \cdot 3$ (1)	C7-C8-C9	111.7 (1)
C8-C9-C10	112.9 (1)	$\mathrm{C} 9-\mathrm{Cl0}-\mathrm{Ol0}$	122.9 (1)
C9-C10-N11	$117 \cdot 1$ (1)	$\mathrm{OlO}-\mathrm{ClO}-\mathrm{N} 11$	120.0 (1)
$\mathrm{C} 7-\mathrm{Cl2-N11}$	116.5 (1)	$\mathrm{C} 7-\mathrm{Cl} 2-\mathrm{O} 12$	124.4 (1)
$\mathrm{Cl}-\mathrm{C} 7-\mathrm{C} 8$	111.8 (1)	$\mathrm{N} 11-\mathrm{Cl} 2-\mathrm{Ol} 2$	119.0 (1)
$\mathrm{Cl}-\mathrm{C} 7-\mathrm{Cl} 2$	107.8 (1)	C7-Cl3-C14	116.1 (1)
$\mathrm{Cl}-\mathrm{C} 7-\mathrm{Cl} 3$	108.3 (1)	$\mathrm{ClO}-\mathrm{Nil}-\mathrm{Cl2}$	127.6 (1)
C13-C7-C8-C9	- 179.3 (1)	$\mathrm{Cl}-\mathrm{C} 7-\mathrm{Cl2-N11}$	-84.3 (1)
$\mathrm{Cl}-\mathrm{C} 7-\mathrm{Cl2}-\mathrm{Ol} 2$	$93 \cdot 3$ (1)	$\mathrm{C} 8-\mathrm{C} 7-\mathrm{Cl} 2-\mathrm{Nl} 1$	36.3 (1)
$\mathrm{C} 2-\mathrm{Cl}-\mathrm{C} 7-\mathrm{C} 8$	-136.4 (1)	$\mathrm{C} 2-\mathrm{Cl}-\mathrm{C} 7-\mathrm{Cl} 2$	-18.6 (2)
$\mathrm{C} 13-\mathrm{C} 7-\mathrm{C} 12-\mathrm{N} 11$	1157.6 (1)	$\mathrm{C} 2-\mathrm{Cl}-\mathrm{C} 7-\mathrm{Cl} 3$	$100 \cdot 7$ (1)
$\mathrm{Cl}-\mathrm{C} 7-\mathrm{C13-C14}$	179.2 (1)	$\mathrm{C} 6-\mathrm{Cl}-\mathrm{C} 7-\mathrm{Cl} 2$	165.0 (1)
C8-C7-C13-C14	55.9 (2)	C6-Cl-C7-Cl3	-75.6 (1)
C12-C7-C13-C14	$4-63 \cdot 1(2)$	C7-C8-C9-Cl0	50.3 (2)
C8-C9-C10-O10	$162 \cdot 0$ (1)	C8-C9-C10-N11	-17.5 (2)
C9-C10-N11-C12	$2-5.7(2)$	$\mathrm{Ol0}-\mathrm{Cl0}-\mathrm{N} 11-\mathrm{Cl2}$	174.8 (1)
C7-C12-N11-C10	0 -5.1(2)	$\mathrm{C} 1-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	59.5 (1)
O12-C12-N11-C10	$10 \quad 177 \cdot 2(1)$	C12-C7-C8-C9	-58.6 (1)

corresponding atoms in both structures shows r.m.s. deviations of $0.258 \AA$ with a maximum separation of $0.509 \AA$ for $\mathrm{C}(5)$.

Fig. 2 shows the crystal packing of AG. The main intermolecular interactions consist of three hydrogen bonds: one symmetric pair of intermediate-strength bonds between $\mathrm{N}(11)$ and $\mathrm{O}(10)$ with the corresponding atoms of the inversion-center-related molecule, $\mathrm{N}(11)-\mathrm{H}(\mathrm{N} 11) \cdots \mathrm{O}(10)(-x,-y,-z): \mathrm{N} \cdots \mathrm{O}$ 2.894 (1), $\mathrm{N}-\mathrm{H} 0.94$ (2), $\mathrm{H} \cdots \mathrm{O} 1.95$ (2) $\AA, \mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ 175 (1) $)^{\circ}$, and one weak bond $\mathrm{N}(4)-\mathrm{H}(\mathrm{N} 4 B) \cdots \mathrm{O}(12)$ ($\left.\frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}+z\right): \mathrm{N} \cdots \mathrm{O} 3.131$ (2), $\mathrm{N}-\mathrm{H} 0.85$ (2), $\mathrm{H} \cdots \mathrm{O} 2 \cdot 30(2) \AA, \mathrm{N}-\mathrm{H} \cdots \mathrm{O} 165$ (2) ${ }^{\circ}$. The weakness of the latter hydrogen bond is consistent with the observations of Voet (1972) and Gartland \& Craven

Fig. 1. Molecular structure of aminoglutethimide. The + enantiomer is shown. Thermal ellipsoids are shown at 50% probability levels.

Fig. 2. Stereo packing diagram for (\pm)-aminoglutethimide, viewed approximately down the c axis. The a and b axes are vertical and horizontal, respectively.
(1974) for hydrogen bonds involving ureido groups. The latter investigators point out that the ureido groups are hydrogen-bond acids and that they therefore form long hydrogen bonds when used as acceptors. The second amino hydrogen $\mathrm{H}(\mathrm{N} 4 A)$ does not form any hydrogen bonds. Cases where a potential hydrogen donor is not involved in any close contacts are very rare. $\mathrm{H}(\mathrm{N} 4 A)$ appears to be directed towards the center of the phenyl ring of the molecule related by the transformation $\frac{1}{2}-x,-\frac{1}{2}+$ $y, \frac{3}{2}-z$. The closest atoms are $\mathrm{C}(5)$ and $\mathrm{C}(6)$: $\mathrm{N}(4) \cdots \mathrm{C}(5) \quad 3.508(2), \quad \mathrm{H}(\mathrm{N} 4 A) \cdots \mathrm{C}(5) \quad 2.66(2)$; $\mathrm{N}(4) \cdots \mathrm{C}(6) 3.480(2), \mathrm{H}(\mathrm{N} 4 A) \cdots \mathrm{C}(6) \quad 2 \cdot 69$ (2) \AA. If this interaction between the amino group and the π cloud of the phenyl ring is energetically favorable, it may also contribute to the weakening of the hydrogen bond involving $\mathrm{H}(\mathrm{N} 4 B)$. The only other short intermolecular contact is the $3 \cdot 240(2) \AA$ contact between $\mathrm{C}(5)$ and $\mathrm{O}(10)\left(\frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z\right)$.

Research supported in part by the Ciba Geigy Corporation and by grant RR-05716 from the National Institutes of Health, DHHS.

References

Banting, L., Smith, H. J., James, M., Jones, G., Nazareth, W., Nicholls, P. J., Hewlins, M. J. E. \& Rowlands, M. G. (1988). J. Enzyme Inhib. 2, 215-229.

Blessing, R. H. (1987). Crystallogr. Rev. 1, 3-57.
Camacho, A. M., Brough, A. J., Cash, R. \& Wilroy, R. (1966). J. Pediatr. 68, 852-853.

Enraf-Nonius (1979). Structure Determination Package. EnrafNonius, Delft, The Netherlands.
Finch, N., Dziemian, R., Cohen, J. \& Steinetz, B. G. (1975). Experientia, 31, 1002-1003.
Gartland, G. L. \& Craven, B. M. (1974). Acta Cryst. B30, 980-987.
Germain, G., Main, P. \& Woolfson, M. M. (1971). Acta Cryst. A27, 368-376.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Kim, S.-H. \& Rich, A. (1968). Proc. Natl Acad. Sci. USA, 60, 402-408.
Santen, R. J., Worgul, T. J., Samojlik, E., Boucher, A. E., Lipton, A. \& Harvey, H. (1982). Cancer Res. Suppl. 42, 3397s.
Shaw, M. A., Nicholls, P. J. \& Smith, H. J. (1988). J. Steroid Biochem. 31, 137-146.
Stout, G. H. \& Jensen, L. H. (1968). X-ray Structure Determination. New York: Macmillan.
Voet, D. (1972). J. Am. Chem. Soc. 94, 8213-8222.
Williams, P. P. (1973). Acta Cryst. B29, 1572-1579.
Williams, P. P. (1974). Acta Cryst. B30, 12-17.

Structure of the Modified Nucleoside $\mathbf{2}^{\prime}, \mathbf{3}^{\prime}$-Dideoxy- $\mathbf{3}^{\prime}$-fluorocytidine*

By H. L. De Winter, N. M. Blaton, O. M. Peeters and C. J. De Ranter \dagger
Laboratorium voor Analytische Chemie en Medicinale Fysicochemie, Instituut voor Farmaceutische Wetenschappen, Katholieke Universiteit Leuven, Van Evenstraat 4, B-3000 Leuven, Belgium

and A. Van Aerschot and P. Herdewijn

Laboratorium voor Farmaceutische Chemie, Rega Institute for Medical Research, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium

(Received 20 April 1990; accepted 7 August 1990)

Abstract

Dideoxy-3-fluoro- β-D-erythro-pentofuranosyl)cytosine, $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{FN}_{3} \mathrm{O}_{3}, \quad M_{r}=229 \cdot 21$, triclinic, $\quad P 1, \quad a=6.997$ (4),$\quad b=7.396$ (4),$\quad c=$ 10.639 (5) $\AA, \quad \alpha=94.48$ (4),$\quad \beta=107.74$ (4),$\quad \gamma=$ $104 \cdot 40(4)^{\circ}, V=500 \cdot 8(5) \AA^{3}, Z=2, D_{m}=1 \cdot 52, D_{x}=$ $1.520 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda($ Mo K $\alpha)=0.71069 \AA, \quad \mu=$ $0.1198 \mathrm{~mm}^{-1}, F(000)=240, T=293 \mathrm{~K}$, final $R=$ 0.033 for 2321 unique observed $[F \geq 4 \sigma(F)$] reflections. The asymmetric unit contains two molecules A

[^2]0108-2701/91/040832-04\$03.00
and B. For molecule A, the N-glycosidic torsion angle χ has a value of $-143 \cdot 5(3)^{\circ}$, the sugar pucker is mixed ${ }^{2} T_{1} /^{2} E$ with $P=154$ (1) (C^{\prime} endo) and ψ_{m} $=40(1)^{\circ}$, and the $\mathrm{O}^{\prime} A-\mathrm{C}^{\prime} A-\mathrm{C}^{\prime} A-\mathrm{C}^{\prime} A$ torsion angle $\gamma=63.4(4)^{\circ}$. For molecule $B, \chi=$ $-153.0(3), \gamma=-71.4(4)^{\circ}$ and the sugar pucker is ${ }^{2} E$ with $P=164$ (1) (C2' endo) and $\psi_{m}=36(1)^{\circ}$. The packing of the crystal is determined by a network of hydrogen bonds. Base pairing between A and B occurs, and in this way a pseudo-inversion centre is formed between the two bases. The conformational parameters are in accordance with the IUPAC-IUB Joint Commission on Biochemical Nomenclature [Pure Appl. Chem. (1983), 55, 1273-1280] guidelines.

[^0]: * To whom correspondence should be addressed.

[^1]: * Lists of anisotropic thermal parameters, bond lengths and angles and structure factors have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 53455 (31 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^2]: * Structural Studies of Modified Nucleosides. Part VI. Part V: Everaert, Peeters, Blaton, De Ranter, Van Aerschot \& Herdewijn (1991).
 \dagger To whom correspondence should be addressed.

